Michael Phillips

Quantitative Scientist Python Pro

lets.ask.mike@gmail.com linkedin.com/in/michaelphillipshuman github.com/mikeisahuman mikeisahuman.com

Key Skills

- General: Adaptability, Agility, Analytical Thinking, Creative Problem Solving, Technical Curiosity
- Coding: Python, C++, Java, Mathematica, Unix / bash / zsh, HPC
- Packages: pandas, numpy, scipy, matplotlib, pyopencl, pycuda, numba
- Usage: object class development, multidimensional optimization, GPU parallelization, visualization
- Science / Math / Statistics: Markov networks, Bayesian inference (distributions and timeseries), thermodynamics and phase transitions, quantum and classical field theories, physics-based ML
- Familiarity: Machine Learning, PCA, k-means clustering, Monte Carlo & Molecular Dynamics simulations

Select Projects

- (1) Forward and Backward Modeling of Timeseries Data
 - Built efficient simulations to generate synthetic timeseries data from stochastic interaction networks; analyzed and interpreted results with differential equations of probability (Master Equation).
 - Built analysis and computational tools for Bayesian inference (Maximum Likelihood) of interaction rates from real-world timeseries data, utilizing both distributional and dynamical properties.
 - Developed GPU kernels for use with PyOpenCL to build large arrays (~18M entries) efficiently.
- (2) Machine Learning and Physics-based Modeling of Cooperative Phenomena
 - Developed object-oriented approach to informatic analysis of biomolecules, such as proteins.
 - Built computationally intensive workflows integrating ML for fully predictive, high throughput calculations of protein properties across scales; applied to datasets of up to 30k, running in ~8 hours.
 - Robust coding practices: designed codebases for simultaneous deployment, modularity, readability, broad applicability, and maximum efficiency my code consistently runs ~50% faster than competitors.

Experience

- (1) Theoretical Researcher in Biological Physics & Stochastic Modeling University of Denver (2021-present)
 - First Year: began with zero experience in the field, learned key technologies of the group, developed Python code from scratch, became subject expert and leader of code benchmarks within ~6 months.
 - During 4 Years: wrote 150+ files of Python code, including 10+ original classes/objects, obtaining results and writing articles for 5+ intensive projects, saving weeks of computation time over competitors.
- (2) College Instructor / Independent Researcher Central New Mexico Community College (2017-2021)
 - Built Python scripts for grade calculations and statistical analysis in support of teaching duties.
 - Developed prototypical models of student behavior, including deterministic and Monte Carlo models.
 - Constructed and rigorously analyzed a toy model of human behavior, with Python.

Education

- (1) University of California, Riverside Ph.D. in Physics (2012-2016)
 - Used Mathematica and Python for intensive calculations and to visualize results in theoretical physics.
- (2) University of New Mexico B.S. in Mathematics and Physics (2006-2011)
 - Used LabView to program control of semi-automated electronic probes, and VHDL to program FPGAs for medium-throughput testing of assembled semiconductor devices.